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Active Set Methods for Nonlinear Programming (NLP)
Nonlinear Program (NLP)

minimize f(x) subject to c(x) =0, x >0

where f, ¢ twice continuously differentiable

Definition (Active Set)
Active set:  A(x) ={i | x; =0}
Inactive set:  Z(x) ={1,...,n} — A(x)

For known optimal active set A(x*), just use Newton's method

Goal: develop robust, fast, parallelizable active-set methods



Active Set Methods for Nonlinear Programming (NLP)

Motivation: mixed-integer nonlinear optimization: x; € {0,1}
@ solve NLP relaxation x; € [0, 1]
@ branch on %; ¢ {0,1} ... two new NLPs: x; =0 or x; =1

@ solve sequence of closely related NLPs
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Branch-and-bound solves millions of related NLPs ...
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N
Active-Set vs. Interior-Point Solvers in MINLP
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o FilterSQP warm-starts much faster than IPOPT
@ similar results for BONMIN (IBM/CMU) solver

It’s only half bull



Large-Scale Active-Set Methods

Goal of This Lecture
Towards scalable active-set methods for nonlinear optimization J

Two Approaches for Large-Scale Active-Set Methods
@ Develop methods for large-scale QP

Use within SQP framework = readily understood
Should work for indefinite QPs

Must allow large changes to active set ... not pivoting
Should be scalable ... i.e. matrix-free linear algebra

@ Develop methods for large-scale NLP

o Ensure suitable for matrix-free linear algebra
e Properly combine step-computation and globalization strategy
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Outline

9 Large-Scale Active-Set Methods for QP
@ Augmented Lagrangians for QPs
@ Filter Methods for Augmentd Lagrangian QPs
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N
Recall: Projected Gradient for Box Constrained QPs

Simpler box constrained QP ...

X—tg .7
minimize ixTHx +g7x = q(x) g

subject to / < x < u P[x—tg]

Projected steepest descent P[x — aVq(x)] ./

@ piecewise linear path

@ large changes to A-set
... but slow (steepest descent)

x¢ Cauchy point = first minimum of g(x(«)), for & >0

Theorem: Cauchy points converge to stationary point.



Projected Gradient & CG for Box Constrained QPs
x0 given such that / < XO<usetk=0

WHILE (not optimal) BEGIN
@ find Cauchy point x; & active set
A(xg) = {i|[xc]i = li or u;}
@ (approx.) solve box QP in subspace Z := {1,...,n} — A(xf)

minimize %XTHx—i—ng

X
subjectto/ < x < u =
xi = [xcli Vi e A(xg)

apply CG to ...

HI,IXZ = ...

for xkt1. set k= k+1
END

Cauchy point = global convergence ... but faster due to CG



How to Include A" x = b?

Projection onto box is easy, but tough for general QP

minimize (x —z)7(x — z)
Pap[z] = { subject to ATx = b

I <x<u
. as hard as original QP! ... Idea: project onto box only
= subspace solve Hz zxz = ... becomes solve with KKT system

|:HZ,I —A:,I] <XI) _

Which gradient / merit function in Cauchy step?
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The Augmented Lagrangian

[Arrow & Solow:58], [Hestenes:69], [Powell:69]

minimize L(x, yic.px) = F(x) — ¥ c(x) + Soullc() P

As yi — Vu: @ X — Xy TOr pe > p
e No ill-conditioning, improves convergence rate

e An old idea for nonlinear constraints ... smooth merit function
e Poor experience with LPs (e.g., MINOS vs. LANCELOT)
e But special structure of LPs (and QPs) not fully exploited

f(x)=3x"Hx+g"x & c(x)=ATx—b
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.
Augmented Lagrangian for Linear Constraints

Nonlinear ¢(x)

(vk,pk) €D Pk > P

Y(p,y) € D, minimize L(x, y, p) has unique solution x(y, p):
@ bound constrained augmented Lagrangian converges

@ Hessian V2 L(x,y, p) is positive definite on optimal face

o p~2||H.| / ||A«A«|| = convergence
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QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN
@ Find wy ™\, 0 optimal solution x; of

mligi(ngilze IxTHx +g"x —yT(ATx = b) + S p[|ATx — b

@ Find A(x{) & estimate penalty 5 = 2 ||Hz||/||AAL ||

@ IF p > p, THEN update pxi 1 = p & CYCLE
ELSE update multiplier: y5 = yx — pk(ATx — b)
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QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN
@ Find wy ™\, 0 optimal solution x; of

mligi(ngilze IxTHx +g"x —yT(ATx = b) + S p[|ATx — b

@ Find A(x{) & estimate penalty 5 = 2 ||Hz||/||AAL ||

@ IF p > p, THEN update pxi 1 = p & CYCLE
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© Solve equality QP in subspace — (Axz, Ay)
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A:,TI Ay ATxE —b
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QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN
@ Find wy ™\, 0 optimal solution x; of

mligi(ngilze IxTHx +g"x —yT(ATx = b) + S p[|ATx — b

@ Find A(x{) & estimate penalty 5 = 2 ||Hz||/||AAL ||

@ IF p > p, THEN update pxi 1 = p & CYCLE
ELSE update multiplier: y5 = yx — pk(ATx — b)

© Solve equality QP in subspace — (Axz, Ay)

{HH —A:,I] (AXI> _ ([vxL(ka, y,f,O)]I)

A:,TI Ay ATxE —b

@ Line-search on L(x{ + aAx,yf + aAy,p); update x,y, k,p
END
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QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN
@ Find wy ™\, 0 optimal solution x; of

mligi(ngilze IxTHx +g"x —yT(ATx = b) + S p[|ATx — b

@ Find A(x{) & estimate penalty 5 = 2 ||Hz||/||AAL ||

@ IF p > p, THEN update pxi 1 = p & CYCLE
ELSE update multiplier: y5 = yx — pk(ATx — b)

© Solve equality QP in subspace — (Axz, Ay)

{HH —A:,I] (AXI> _ ([vxL(ka, y,f,O)]I)

A:,TI Ay ATxE —b

@ Line-search on L(x{ + aAx,yf + aAy,p); update x,y, k,p

END
1.-3. identify active set while 4. gives fast convergence
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.
Forcing Sequences of Augmented Lagrangian Methods

In general, two competing aims in augmented Lagrangian:
O reduce hy := |ATx; — b|| <71k 0
@ reduce Oy == ||V L(xk, Yk, p) — zi|| < wi N0

Note: QPPAL does not need 7y,
see also [Dostal:99], [Delbos&Gilbert:03]
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.
Forcing Sequences of Augmented Lagrangian Methods

In general, two competing aims in augmented Lagrangian:
O reduce hy := |ATx; — b|| <71k 0
@ reduce Oy == ||V L(xk, Yk, p) — zi|| < wi N0

Note: QPPAL does not need 7y,
see also [Dostal:99], [Delbos&Gilbert:03]

... two arbitrary sequences, 7, wk

.. why should one sequence {wy},{nx} fit all problems 777
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A Filter for Augmented Lagrangian Methods

Introduce a filter F for convergence
e list of pairs (||ATx — bl|, | VL — z]|)
@ no pair dominates any other pair

@ new xj acceptable to filter F, iff

Q h <099 -hVlieF
Q 0,<099-0,VieF

IV L(xy, -z
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@ no pair dominates any other pair
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A Filter for Augmented Lagrangian Methods

Introduce a filter F for convergence |V L(x,y,nN-z|
list of pairs (||[ATx; — b||,||VL — z|)
@ no pair dominates any other pair

@ new xj acceptable to filter F, iff

Q 0,<099-6,VIeF

@ remove redundant entries
@ reject new x, if hy > h; & 0, > 0, | Ax = b]|

.. an old friend from Chicago (Castellmarre di Stabia)

\
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Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point x¢ for filter:

© xg,yg acceptable to filter

Q [|[VL(xk: ik, px) — 2kl < wi
... optimality of Lagrangian

a 16/37



Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point x¢ for filter:

c ¢ , IVLEy.N=z|
© X, y{ acceptable to filter

(2] ”VL(Xk;)’k»Pk) - Zk” < wg
... optimality of Lagrangian

New: wy := 0.1max{||VL, — z|}
... depends on filter IAx - bl
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Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point x¢ for filter:

c ¢ , IVLEy.N=z|
© X, y( acceptable to filter

Q [IVL(xk, Yk px) — 2kl < wi
... optimality of Lagrangian

New: wy := 0.1max{||VL, — z|}
... depends on filter IAx - bl

Consequences of Filter

@ ensures that back-tracking line-search will succeed
. if not acceptable then reduce wyy1 = wi/2

Q@ & wii1 = wk/2 ensure can always find Al Capone
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A Filter for QPPAL

WHILE (not optimal) BEGIN

@ Find wy optimal solution x of

minimize %XTHX +g"x—yT(ATx - b) + %/)kHATX — b||?
1<x<u

@ Find A(x{) & estimate penalty 5 = 2 ||Hz||/||AzAL ||
@ IF p > px THEN update py11 = p & CYCLE
ELSE update multiplier: y5 = yx — pk(ATx¢ — b)

@ Solve equality QP in subspace — (Axz, Ay)

END

o 17/37



A Filter for QPPAL

WHILE (not optimal) BEGIN

@ Find wy optimal solution x of

minimize %XTHX +g"x—yT(ATx - b) + %[)kHATX — b||?
1<x<u

@ Find A(x{) & estimate penalty 5 = 2 ||Hz||/||AzAL ||
@ IF 5 > px THEN update pxy 1 = p & CYCLE
ELSE update multiplier: y5 = yx — pk(ATx¢ — b)
Q IF (x;, yf) not acceptable THEN w1 = wy/2 & CYCLE
@ Solve equality QP in subspace — (Axz, Ay)
@ Filter-search along (x§ + aAx, yf + aAy); update x, y, k
END
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Properties of QPPAL

First-order multiplier update & augmented system solve < Newton
step on first order conditions (V. L,V ,L) =0

*
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Properties of QPPAL

Lemma (Friedlander)

First-order multiplier update & augmented system solve < Newton
step on first order conditions (V,L,V,L) =0

Filter version has no restoration phase
e Step 4. IF (xg,yc) not acceptable THEN
Wk+1 = wk/2 & CYCLE
= tighten tolerance of BCL = BCL is restoration phase
= always find Al Capone (Cauchy point)

a 18/37



Properties of QPPAL

Lemma (Friedlander)

First-order multiplier update & augmented system solve < Newton
step on first order conditions (V,L,V,L) =0

Filter version has no restoration phase
e Step 4. IF (xg,yc) not acceptable THEN
Wk+1 = wk/2 & CYCLE
= tighten tolerance of BCL = BCL is restoration phase
= always find Al Capone (Cauchy point)

@ Augmented system solve is 2nd restoration phase:
A.zxz = b — A, ax4 & full step = feasibility
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Outline

© Large-Scale Active-Set Methods for NLP
@ Augmented Lagrangian Filter Method
@ Outline of Convergence Proof
@ Outlook and Conclusions
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Two-Phase Active-Set Framework for NLP
NLP: minimize f(x) subject to c¢(x) =0, x >0

repeat
@ Compute cheap first-order step x(K) + s, e.g. LP/QP solve
@ Predict active set from s: A(x(K) + 5) & T(x(¥) + s)
© Compute second-order EQP step on active set:

Hi A | (Ax\
[AkT ] <Ay> =.. Newton step

where Hy = V2L and A, = [Vc(W 1 [(0] active c/s
@ Enforce global convergence & set k + k+1
until optimal solution found

(Fletcher & de la Maza:89), (Gould & Robinson:10), (Fletcher:11)

Toward scalable nonlinear optimization
= replace LP/QP ... avoid pivoting, i.e. rank-one matrix updates
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Augmented Lagrangian Methods (LANCELOT)

Y Augmented Lagrangian:

~—= Ly = f(x) =y e(x) + §le(x)I3
With sequences wy 0 and 7, \, 0

repeat
@ Find wy optimal solution (k1) of mini>naize Lp(x,y(k))
XZ

@ if [|c(x“D)| < 1y then

update multipliers: y(k+t1) = (k) _ p, c(x(k+1))
else

increase penalty: pixi1 = 2pk

© Choose new (711, wk+1); set k + k+1

until (optimal solution found)

see e.g. (Conn, Gould & Toint:95) and (Friedlander, 2002)
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Augmented Lagrangian Methods (LANCELOT)

Advantage of Augmented Lagrangian Methods

@ Scalable computational kernels

Disadvantages of Augmented Lagrangian Methods
@ First-order method in multipliers = slow convergence
@ Arbitrary forcing sequences (wg, k) ... one fits all NLPs?
© Slow penalty update = slow for infeasible NLPs

Improving augmented Lagrangian methods:
© Add equality QP step for fast Newton-like convergence
@ Replace forcing sequence (wy, 7x) by filter
© Exploit structure for penalty estimates & use restoration phase

Goal: extend (Friedlander & L., 2008) from QP to NLP



Augmented Lagrangian Filter
Filter F to replace forcing sequences (w, 1k)

Definition (Augmented Lagrangian Filter)
o Filter F is a list of pairs (n(x),w(x,y)) where

w(x,y) = | min{x, ViLo(x, y) }l ... Lagrangian Lg
n(x) = |lc(x)]] ... constraint violation

such that no pair dominates another
o A point (x(K) y(kK)) acceptable to filter F iff

n(x¥) < B or w(x®,y¥) < fuy — yn(x¥), Vi€ F |

Typically: 5 =0.99, v =0.01
Approximate minimization of Lp(x,y(k)) until acceptable to filter
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Augmented Lagrangian Filter
Wy

n

o w(x,y) = [[min{x, ViLo(x,y)}|| and n(x) := [lc(x)]

h—
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Augmented Lagrangian Filter
Wy

n

o w(x,y) := || min{x, ViLo(x,y)}|| and n(x) := [[c(x)]|
e Automatic upper bound: U = [3/ywmax, because w >0
a - 24 /37



Augmented Lagrangian Filter Method

while (x(%), y(k)) not optimal do
j = 0; initialize XU) = x(K), &; = wy and 7 = nx
repeat
£U+1) « approximate argmin, > Ly, (x, yk)) from xU)
if restoration switching condition then
Increase penalty: pgi1 = 2pk & switch to restoration
.. find acceptable (x(k+1), y(k+1)) and set k = k + 1
end
Provisionally update: yUtt) = y(k) — p.c(xUF1))
Compute (fj4+1,0j4+1) and set j = j +1
until (7);, ;) acceptable to Fy;
Set (X(k+1)7y(k+1)) — ()A((j)’y,(j))
Get A+ = x,-(kH) = 0} & solve equality QP
if 7511 > 0 then add (nx11,wks1) to F ... set k = k + 1;
end
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.
Approximate Minimization of Augmented Lagrangian

Inner initialization: j = 0 and (®) = x(¥)

For j =0,1,... terminate augmented Lagrangian minimization,

U « approximate argmin L, (x,y())
x>0

when standard sufficient reduction holds:

ALy, =L, (89), yy — [, (U () > 65, > 0

E.g. Cauchy step on augmented Lagrangian for fixed p, and y(¥)

More natural than requiring reduction in F.O. error @; \, 0
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Switching to Restoration

Goal: Infeasible NLPs = want to find mini>n(1)ize [c(x)]|3 fast!

Switch to restoration, min ||c(x)||, if 0y
Q@ 7); > BU ... infeasible, or
Q@ 7 > Mmin(1,&7), for 7 € [1,2]
.. infeasible Fritz-John point, or
Q || min(VcWcl) 20| < e
and [[c9]| > Brjmin
.. infeasible FO Point, where

BU

Mmin = /rgg:( {nl} >0 | L

Lemma (Finite Return From Restoration) J

N 2 Nmin VI € Fx = 3 x(k+1) acceptable or restoration converges
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Second-Order Steps & KKT Solves

o x(kt1) mini>rr(1Jize L,(x,y"®) ... predicts A(x(<+1)

@ Accelerate convergence, by solving EQP with Axy = 0:

[’:’Ik-H Ak—&-l} (AX1> _ —VfI(kH)
AL Ay ) 7\ —e(xtken)
where Hj 1 is “reduced”’ Hessian wrt bounds (Ax4 = 0)

@ Line-search: a1 € {0} U [min, 1] such that

(cH ), y D) = (D), D) oy (AxHD), Ay (kD)

Fy-acceptable
.. i1 = 0 OK, because (%(<*1) §(k+1)) was acceptable
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Augmented Lagrangian Filter Method

while (x(%), y(k)) not optimal do
j = 0; initialize XU) = x(K), &; = wy and 7 = nx
repeat
£U+1) « approximate argmin, > Ly, (x, yk)) from xU)
if restoration switching condition then
Increase penalty: pgi1 = 2pk & switch to restoration
.. find acceptable (x(k+1), y(k+1)) and set k = k + 1
end
Provisionally update: yUtt) = y(k) — p.c(xUF1))
Compute (fj4+1,0j4+1) and set j = j +1
until (7);, ;) acceptable to Fy;
Set (X(k+1)7y(k+1)) — ()A((j)’y,(j))
Get A+ = x,-(kH) = 0} & solve equality QP
if 7511 > 0 then add (nx11,wks1) to F ... set k = k + 1;
end
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Overview of Convergence Proof

Assumptions
@ Functions f(x) and c(x) twice continuously differentiable

@ |lc(x)|| = oo whenever ||x|| — oo ... ignore EQP for analysis

Outline of Convergence Proof

@ Filter 7, = iterates, xk) remain in compact set
@ Inner iteration is finite = 3 convergent subsequence
© Mechanism of filter = limit points are feasible

@ Show limit points are stationary in two cases:

® Bounded penalty ... rely on filter
@ Unbounded penalty ... classical augmented Lagrangian

Do not assume compactness, or bounded multipliers!

Remark J
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Iterates Remain in Compact Set

Lemma (All Iterates Remain in Compact Set) J

All major and minor iterates, x¥) and *U) are in a compact set, C.

Proof. ®©

@ Upper bound on filter (U = 8/vywmax)
= |lc(x(k))|| < U for all major iterates
@ Switching condition (7); < BU)
= [lc(3U)|| < U for all minor iterates

© Feasibility restoration minimizes ||c(x)|| k u
= [|c(x(¥))|| bounded

= [le(M)] < U and [[c(xD)]| < U

c(x) twice continuously differentiable & ||c(x)|| — oo if ||x]| = oo
= x(K), %U) e C, compact
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Finiteness of Inner lteration

Lemma (Finiteness of Inner Iteration)

The inner iteration is finite.

Proof. Assume inner iteration not finite = 3%* = lim&U) € C

(O]

©Q Fixed penalty: px =p < 0
@ Sufficient reduction of L,(x, y(¥))

= AL, > o@j; assume @; > w0 >0

= Lp(ﬁ(f),y(k)) unbounded

... but [|c(xY)]], p, and f(x) bounded
© Contradiction = @; — 0, and &, =0
@ Switching: 7; < M&@; = ), < M@,

= (s, w«) = (0,0) and 3 filter acceptable points near (0, 0)
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Feasible Limit Points

Lemma (Feasible Limit Points)

In outer iteration, feasibility error n, = ||c(x())|| — 0.

Proof. Two cases:
Q 7 =0,Vk > Kp ... of course!

Q@ 1, > 0, subsequence Vk > Kj
see (Chin & Fletcher, 2003)
.. envelope = nx — 0

.. standard filter argument

Oy
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First-Order Optimality

Lemma (First-Order Stationarity)

First-order optimality wy = || min{x(¥), VXL[()k)}H — 0.

Proof. (1) px < p < o0 and (2) px unbounded: classical proof

@ Assume wy > @ >0 & seek contradiction
= ALD = L5(xR), y R — 15(xkFD) y(K) > owy > 06 > 0

e First-order multiplier update, y(k+1) = (k) — 5¢(x(k+1)
AL = L) y9) — L))
= AL — plle(x*)13
> 0w — plle(x* )3

o Feasible limit: c(x(*™1)) — 0 = ||c(x(kT1))|3 < 02%, Vk > K
= ALg”t > a%, Vk > K outer iteration sufficient reduction
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First-Order Optimality (Proof cont.)

e Sufficient reduction at outer iterations: AL;—’”t > a%
= Ly(x,y) = F(x) — T c(x) + &llc(x)| unbounded
o x(K) € C compact = f(x) and ||c(x)||3 bounded

@ Show y " ¢(x) < M bounded:
o Feasibility Lemma = 1, = ||c(x())|| — 0
o Filter acceptance: Monotone sub-sequences 1, < Bnx—1
o FO multiplier update: y(¥) = y(©) — 55~ ()

(07 (0 ( PZ (/)) (k)
< <1+ﬁz77/> mw < Mo <5k+ﬁ2ﬂl+k> < M
/ i
e Contradiction: Lz(x,y) = f(x) =y c(x)+ §|lc(x)||3 bounded

= wk — 0 ... first-order stationarity
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Key Computational Kernels

O Filter stopping rule readily included in minimization of L,
° VLP()A((jJrl)’y(k)) — VLO()A(UH),}A,(J'H)) = Qj41

@ Approximate minimization of augmented Lagrangian
e projected gradient plus CG on subspace

[Hic+ pAKAT ] 2 Bxz = =V L, (xH), y®)

o [Fc A ] (D) _ (= VL9, y0)
A[—/fll u ) 0

© KKT system solve

o F/k Ak AXI .
AZ— Ay )=
o indefinite reduced Hessian = inertia control

= exploit scalable matrix-free solvers based on Hy, Ay
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Summary and Teaching Points

Presented Active-Set Method for QP /NLP
@ Augmented Lagrangian Filter for QP or NLP
o lIdentify active set via augmented Lagrangian step
o Perform EQP solve
e Use filter instead of forcing sequences
@ Main computational kernels are parallelizable

e Bound-constrained optimization via projected-gradient with CG
o KKT-system solves, using GMRES or MINRES
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